If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18y^2=41y+10
We move all terms to the left:
18y^2-(41y+10)=0
We get rid of parentheses
18y^2-41y-10=0
a = 18; b = -41; c = -10;
Δ = b2-4ac
Δ = -412-4·18·(-10)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-49}{2*18}=\frac{-8}{36} =-2/9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+49}{2*18}=\frac{90}{36} =2+1/2 $
| -9(1+3z)=-22 | | 1/2(2y+6)+13=3y | | 2((12+2x)+(15+2x))=74 | | 4(-5x+4)=x | | F(x)=2.7x^2+9x–3 | | 12(x-3.2)=54 | | 1.4b+1.1=8.3-b | | 1/2(3/4x)=540 | | (3/4x)1/2=540 | | 15+5x=3x+11 | | 4(10)^3t=15 | | 15x-28.5=99 | | Y-2=2y+6 | | 5x+10=380 | | 11+3y(12+2)=3y | | 4m=180 | | 3x=110-2x | | 7n+5=-16 | | 10=-4y+2(y+6) | | 11^-4y=9 | | 6+3x=24+2x | | 85/x=11 | | 1.2(12.3r-7.4)=43.8 | | 5/x=1/21 | | 15x-37=68 | | 10/4=3/4x | | 3.8x+3.7+9.5=0 | | (x+7)/4=10 | | 3c+5/4-5c=-5 | | 2x+24+3x+6=180 | | 40=-4w–4w | | 9x^2+42x-49=0 |